Robust Low-Poly Meshing for General 3D Models

ZHEN CHEN, The University of Texas at Austin & LightSpeed Studios, USA

ZHERONG PAN, LightSpeed Studios, USA
KUI WU, LightSpeed Studios, USA

ETIENNE VOUGA, The University of Texas at Austin, USA

XIFENG GAQO, LightSpeed Studios, USA

)

"
5 o Ty A €
oy &b 9

——y RS

&

Fig. 1. A gallery of wild high-poly input meshes and their corresponding low-poly outputs generated by our method, where the low-polys are manifold,
watertight, and self-intersection free, and have a small visual difference from their high-poly counterparts.

We propose a robust re-meshing approach that can automatically generate
visual-preserving low-poly meshes for any high-poly models found in the
wild. Our method can be seamlessly integrated into current mesh-based 3D
asset production pipelines. Given an input high-poly, our method proceeds
in two stages: 1) Robustly extracting an offset surface mesh that is feature-
preserving, and guaranteed to be watertight, manifold, and self-intersection
free; 2) Progressively simplifying and flowing the offset mesh to bring it
close to the input. The simplicity and the visual-preservation of the gen-
erated low-poly is controlled by a user-required target screen size of the
input: decreasing the screen size reduces the element count of the low-poly

Authors’ addresses: Zhen Chen, The University of Texas at Austin & LightSpeed Studios,
Austin, Texas, USA, 78712, zchen96@cs.utexas.edu; Zherong Pan, LightSpeed Studios,
Bellevue, Washington, USA, 98004, zrpan@global.tencent.com; Kui Wu, LightSpeed
Studios, Los Angeles, California, USA, 90066, kwwu@global.tencent.com; Etienne
Vouga, The University of Texas at Austin, Austin, Texas, USA, 78712, evouga(@cs.utexas.
edu; Xifeng Gao, LightSpeed Studios, Bellevue, Washington, USA, 98004, xifgao@global.
tencent.com.

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).

© 2023 Copyright held by the owner/author(s).

0730-0301/2023/1-ART1

https://doi.org/10.1145/3592396

but enlarges its visual difference from the input. We have evaluated our
method on a subset of the Thingi10K dataset that contains models created by
practitioners in different domains, with varying topological and geometric
complexities. Compared to state-of-the-art approaches and widely used soft-
ware, our method demonstrates its superiority in terms of the element count,
visual preservation, geometry, and topology guarantees of the generated
low-polys.

CCS Concepts: « Computing methodologies — Mesh geometry models.

Additional Key Words and Phrases: iso-surface extraction, remeshing, ge-
ometry processing

ACM Reference Format:

Zhen Chen, Zherong Pan, Kui Wu, Etienne Vouga, and Xifeng Gao. 2023.
Robust Low-Poly Meshing for General 3D Models. ACM Trans. Graph. 1, 1,
Article 1 (January 2023), 20 pages. https://doi.org/10.1145/3592396

1 INTRODUCTION

Mesh is a ubiquitously employed representation of 3D models for
digital games. While a mesh with a large number of polygons (high-
poly) is required to express visually appealing details, rendering
its low-poly approximation at distant views is a typical solution
to achieve real-time gaming experience, especially on low-end de-
vices. High-polys, no matter whether they are manually created

ACM Trans. Graph., Vol. 1, No. 1, Article 1. Publication date: January 2023.

https://doi.org/10.1145/3592396
https://doi.org/10.1145/3592396

1:2 « Zhen Chen, Zherong Pan, Kui Wu, Etienne Vouga, and Xifeng Gao

through modeling software or automatically converted from CSG
and implicit functions, often have complex topology and geometries,
such as numerous components, high genus, non-manifoldness, self-
intersections, degenerate elements, gaps, inconsistent orientations,
etc. These complexities can pose significant challenges to the design
of automatic low-poly mesh generation algorithms.

Over past decades, two typical ways are developed to obtain
low-poly textured models: automatic mesh reduction that preserves
original textures [Hoppe 1999; Liu et al. 2017]; manual mesh model-
ing followed by UV-generation and texture baking that creates new
textures. Mesh reduction usually removes triangles through itera-
tive application of local operations [Garland and Heckbert 1997]
or element clustering [Cohen-Steiner et al. 2004], which relies on
existing mesh vertices and connectivity. As a result, this method is
only suitable for generating the medium-levels of LOD, while intro-
ducing serious artifacts when generating low-polys for meshes with
excessive topology complexity as illustrated in Fig. 12 and Fig. 13.
In the second pipeline, while UV-generation and texture baking
can be done via semi-automatic tools (e.g. Maya and Marmoset),
manual meshing is the most labor(cost)-intensive step. Therefore,
we address this most urgent and challenging problem, aka, low-poly
meshing.

Many automatic re-meshing approaches exist to represent the
original mesh with a proxy and simplify the proxy mesh via a
row of different techniques, e.g., polygonal mesh construction by
plane fitting and mixed-integer optimization [Nan and Wonka 2017],
cage mesh generation through voxel dilation and mesh simplifica-
tion [Calderon and Boubekeur 2017], shape abstraction by feature
simplification [Mehra et al. 2009], extremely low-poly meshing using
visual-hull boolean operations [Gao et al. 2022], mesh simplification
through differentiable rendering [Hasselgren et al. 2021], enclosing
mesh generation through alpha-wrapping with an offset [Portaneri
et al. 2022], and learning based approaches [Chen et al. 2020, 2022b].
However, these re-meshing approaches either rely on heavy user
interactions, need careful parameter tweaking, or work for a lim-
ited type of model. Commercial software also has low-poly mesh
functions, but generates unsatisfactory results in many cases. For
example, in Fig. 11, and Table 3, we show the generated results
using different low-poly construction modules in Simplyon [AB
2022]. It generates meshes with either triangle intersections, or non-
satisfactory visual appearances. It remains to be a challenging task
to automatically and robustly generate low-poly meshes for general
3D models used in the industry.

In practice, artists still manually craft low-poly meshes to ensure
that they have a small number of triangles and preserve the visual
appearance of the original mesh as much as possible. This often
involves multiple iterations of manual adjustments, which incurs
intensive labor work and prolonged project periods and remains to
be a bottleneck for the current fast-changing game industry. Robust
and automatic approaches that can generate satisfactory low-polys
are in high demand.

From an input mesh with arbitrary topology and geometry prop-
erties, our goal is to generate its low-poly counterpart that is visually
indistinguishable from faraway views. The visual appearance of a
3D shape can be evaluated by its silhouette and surface normal,
while the simplicity of a low-poly mesh is typically measured by the

ACM Trans. Graph., Vol. 1, No. 1, Article 1. Publication date: January 2023.

number of triangles. We propose a new approach to generate low-
polys that is both simple and visual-preserving, with the additional
guarantees of being manifold, watertight, and self-intersection free.
These additional properties are essential for artists to conveniently
perform UV-generation and texture baking on the bare low-poly
mesh.

Our method combines the idea of mesh-reduction and re-meshing.
During the first stage, we re-mesh the high-poly to a “clean” proxy
mesh and remove all the topological complexities therein. We then
aggressively reduce the element count of the proxy mesh, while
geometrically deforming the proxy to maintain visual preservation,
leading to our low-poly output.

Our method specifically requires two inputs: a high-poly mesh
and a parameter np, which represents the screen-space size of the
high-poly mesh when rasterized onto a 2D screen. In practical terms,
let [, denote the 2D screen’s pixel length, and [represent the diago-
nal length of the high-poly mesh’s bounding box. The parameter
np can be calculated as [/, signifying the maximum number of
pixels that the high-poly mesh’s diagonal could occupy across all
potential rendering views. During the first stage of our method,
we build an unsigned distance field for the input and introduce a
novel offset surface extraction method to extract a d-isosurface with
d = I/np. Our algorithm not only guarantees the offset mesh is
manifold, watertight, and self-intersection-free, but also recovers
the normal approximated sharp features. During our second stage,
we alternate among three steps, i.e. mesh simplification, mesh flow
process, and feature alignment, to reduce the element count of the
extracted mesh, while bringing the mesh close to the input and
maintaining the aforementioned guarantees. All three steps contain
only local operations, such as edge collapse and vertex optimization.
Therefore, any local operation that violates a guarantee can be easily
rolled back.

By construction, our algorithm is robust and automatic. The ef-
fectiveness of our approach is demonstrated by comparing it with
state-of-the-art methods and popularly used software on a subset
of the Thingil10K dataset [Zhou and Jacobson 2016] containing 3D
models with varying complexities. All the data shown in the paper
and the executable program can be found here!.

2 RELATED WORKS

We first review low-poly mesh generation methods and then sum-
marize the methods for iso-surface extraction.

2.1 Low-poly Meshing

Obtaining a low-poly mesh has been a research focus in computer
graphics for several decades. Early works use various mesh reduc-
tion techniques that directly operate on the original inputs through
iterative local element removal. Examples involve geometric error-
guided techniques [Garland and Heckbert 1997; Hoppe 1996; Le-
scoat et al. 2020], structure-preserving-constrained technique [Sali-
nas et al. 2015], volume-preserving technique [Lindstrom and Turk
1998], and image-driven technique [Lindstrom and Turk 2000], to
name just a few. Clustering-based approaches [Cohen-Steiner et al.
2004; Li and Nan 2021] provide another direction for reducing the

!https://robust-low-poly-meshing.github.io/

element count. An inclusive survey is given in Khan et al. [2022].
While these approaches are well recognized in game production
pipelines, they are better suited for reducing the mesh size of the
original models to a medium level, e.g. reducing the number of
faces by 20% - 80%. Unfortunately, for 3D graphics applications run-
ning on lower-end devices, often a much coarser low-poly mesh is
desired. Such extremely low-poly meshes require topologic and geo-
metric simplifications that are far beyond the capabilities of these
mesh reduction techniques. Unlike mesh reduction techniques, a
parallel effort aims at re-meshing, i.e., completely reconstructing a
new mesh mimicking the original one. These methods vary drasti-
cally in their techniques and we classify them by their main feature
into voxelization base re-meshing, primitive fitting, visual-driven, and
learning-based.

Voxelization Based Re-meshing. Both Mehra et al. [2009] and
Calderon and Boubekeur [2017] rely on a voxelization of the raw
inputs to obtain a clean voxel surface. While Mehra et al. [2009]
requires feature-guided re-triangulation, deformation, and curve-
network cleaning to generate shape abstractions for architectural
objects, Calderon and Boubekeur [2017] assumes the input meshes
come with clear separation of the inside and outside space and heav-
ily depends on user interactions to generate the final low-polys.
Recently, Wu et al. [2022] combine voxelization-based remeshing
with patch-based simplification to generate occluders for building
models to pre-cull unseen meshes before online rendering.

Primitive Fitting. Various primitives can be composed to fit an
object. For example, methods in [Bauchet and Lafarge 2020; Chauve
et al. 2010; Fang and Lafarge 2020; Fang et al. 2018; Kelly et al.
2017; Nan and Wonka 2017] first compute a set of planes to ap-
proximate patch features detected in point clouds or 3D shapes,
and then select a faithful subset of the intersecting planes to ob-
tain the desired meshes. However, the key challenges of this type
of method are: 1) properly computing a suitable set of candidate
planes is already a hard problem by itself; 2) the complexity of the
resulting mesh is highly unpredictable, requiring many trial-and-
error to find a possible good set of parameters. Works using other
primitives [Huang et al. 2014; Mehra et al. 2009; Wei et al. 2022;
Yang and Chen 2021], such as boxes, convex shapes, curves, etc., are
also promising directions, but none of them has been specifically
dedicated for generating low-polys.

Visual-driven Approaches. Differentiable rendering [Laine et al.
2020] rises as a hot topic that enables the continuous optimiza-
tion of scene elements through the guidance of rendered image
losses. However, most of them [Hasselgren et al. 2021; Luan et al.
2021; Nicolet et al. 2021] require an initial mesh that is typically a
uniformly discretized sphere. The key obstacle to generating low-
polys via differentiable rendering is that the mesh reduction cannot
be modeled as a differentiable optimization process. Although the
analysis-by-synthesis type of optimizations [Luan et al. 2021] could
be employed, the Laplacian regularization term used by most dif-
ferentiable rendering techniques can guide the mesh far from the
groundtruth, especially in a low-poly setting. A visual hull-based
approach [Gao et al. 2022] has been recently proposed to gener-
ate extremely low-polys for building models, however, it not only

Robust Low-Poly Meshing for General 3D Models « 1:3

creates sharp creases for organic shapes, but also makes it hard to
control the target element number.

Learning-based Methods. A conventional 3D mesh reconstruc-
tion pipeline is composed of three steps: plane detection, intersec-
tion, and selection, while learning-based methods enable alternative
pipelines. As an example, by converting it to a BSP-net, Chen et al.
[2020] demonstrates that low-polys can be extracted from images.
However, this method shares the common shortcomings of learning
approaches: a large dataset is required for the network training, and
the learned model works only for meshes of a similar type. It further
requires the voxelizations of the dataset to have well-defined in/out
segmentation. Furthermore, the generated meshes inherit the issues
of polyfit-like [Nan and Wonka 2017] approaches: it creates sharp
creases that are not present in the high-poly, and parameter tun-
ing is difficult. By embedding a neural net of marching tetrahedral
into the differentiable rendering framework, Munkberg et al. [2022]
can optimize the meshes and materials simultaneously. As demon-
strated in their work, by controlling the rendered image resolution,
it can generate 3D models in a LOD manner. But these extended
features brought by learning approaches are beyond the scope of
our investigation.

2.2 Iso-surfacing Algorithms

The marching cubes (MC) algorithm was proposed concurrently
by Lorensen and Cline [1987] and Wyvill et al. [1986] for recon-
structing iso-surfaces from discrete signed distance fields. Several
follow-up works were proposed to solve the tessellation ambiguities
in each cube [Chernyaev 1995; Diirst 1988; Matveyev 1994; Nielson
2003, 2004; Nielson and Hamann 1991]. One of the best methods is
MC33 [Chernyaev 1995], which enumerates all possible topologic
cases based on trilinear interpolation in the cube. The follow-ups
resolve non-manifold edges in MC33 [Custodio et al. 2013; Lopes
and Brodlie 2003]. MC33 was correctly implemented by Vega et al.
[2019] after resolving the defective issues of the previous implemen-
tations [Custodio et al. 2013; Lewiner et al. 2003]. However, none of
these methods is able to recover sharp features.

To capture sharp features of the iso-surface, Kobbelt et al. [2001]
first introduced an extended marching cubes method (EMC) to insert
additional feature points, given that the normals of some intersecting
points are provided. Dual contouring (DC) [Ju et al. 2002] adapted
this idea with Hermite data (the gradient of the implicit surface
function). They proposed to insert one dual feature point inside
a cube and then connect the dual points to form an iso-surface.
DC does not need to perform the edge-flip operations required
by [Kobbelt et al. 2001], but often generates non-manifold surfaces
with many self-intersections. The non-manifold issue was later ad-
dressed in [Ju and Udeshi 2006], while the self-intersection issue
was addressed in [Schaefer et al. 2007]. However, none of these
two methods solves both the non-manifold and self-intersection
problems simultaneously. Dual Marching Cubes (DMC) [Schaefer
and Warren 2004] considers that the dual grid aligns with features
of the implicit function, and extracts the iso-surface from the dual
grid. DMC can preserve sharp features without excessive grid sub-
divisions as required by DC. Unfortunately, DMC still does not
guarantee the generated mesh is self-intersection-free. Manson and

ACM Trans. Graph., Vol. 1, No. 1, Article 1. Publication date: January 2023.

1:4 « Zhen Chen, Zherong Pan, Kui Wu, Etienne Vouga, and Xifeng Gao

Input Mesh Mesh Extraction Mesh Optimization

(¢) Miy; (23805, 1088) (d) Min; (9433, 706)

(b) My (761821, 1076)

(a) M; (36779, 0) () My, (2703, 390)

Fig. 2. The pipeline of our algorithm. The notation (e, ®) represents (number of faces, light field distance to the input mesh), where the latter is a measure of
visual similarity between two 3D shapes, introduced by Chen et al. [2003]. (a): The input high-poly surface, which is not necessarily manifold, orientable, or
self-intersection free. In this example, the input surface M; is not 2-manifold, with 114 non-2-manifold edges, has 751 components and is not orientable (the
back faces are rendered in black). It has over 36k faces, among which 23345 faces are self-intersected. (b): The extracted iso-surface My with d = ﬁ,
is the bounding box diagonal size of M; (Section 3.1). It is an orientable, water-tight, self-intersection free mesh with 19-components and 761k faces. (c-e) Our
mesh optimization step (Section 3.2), during which we apply mesh simplification, flow, and alignment. While the simplification step may result in a slight
increase in LFD, the subsequent flow and alignment steps enhance visual similarity. Consequently, the overall optimization step progressively reduces the
light field distance and simplifies the mesh, and the intermediate meshes denoted as Min:. The output M, has only 2703 faces. Our approach resolves the

where [

existing topologic (non-manifoldness) and geometric issues (self-intersection), and approximates the high-poly with 7.3% faces.

Schaefer [2010] avoided self-intersections by subdividing each cube
into multiple tetrahedra, and then applying marching tetrahedra
(MT) to extract the iso-surface [Doi and Koide 1991]. This approach
solves the self-intersection problems in the DMC approach, but
the division of multiple tetrahedra, together with the employed oc-
tree structure, makes the algorithm either generate an overly dense
mesh or require trial-and-error for suitable octree depth parameter
settings. A survey about these approaches can be partially found
in [de Aratjo et al. 2015]. Recently, Portaneri et al. [2022] proposed
an algorithm to generate watertight and orientable surfaces that
strictly enclose the input. Their output is obtained by refining and
carving the 3D Delaunay triangulation of the offset surface, however,
still without the feature-preserving property.

There are also several learning-based approaches for iso-surface
extraction. Deep marching cubes [Liao et al. 2018] and deep march-
ing tetrahedra [Shen et al. 2021] learn differentiable MC and MT
results. However, none of them can capture the sharp features of
the initial surface. Neural marching cubes [Chen and Zhang 2021]
and Neural dual contouring [Chen et al. 2022a] train the network to
capture the sharp features without requiring extra Hermite informa-
tion. However, the former generates self-intersected meshes, and the
latter leads to non-manifold results. In Table 1, we summarize these
methods and show their strength and weakness in terms of topo-
logic and geometric properties: manifoldness, self-intersection-free,
and sharp feature preservation.

3 METHOD

Given the input of a polygonal mesh M;, a maximum number of
screen size ny (i.e. the number of pixels covered by the diagonal
length of the input’s bounding box), and an optionally user-specified
target number of triangles np, we seek to generate a triangle mesh
M, with the following properties:

2 Although the initial paper results in non-manifold edges, this artifact was fixed by the
follow-up works [Custodio et al. 2013; Lopes and Brodlie 2003]

ACM Trans. Graph., Vol. 1, No. 1, Article 1. Publication date: January 2023.

Table 1. A Brief summary of the existing methods by their capabilities of
maintaining geometry and topology properties. A more detailed survey can
be found in [de Aradjo et al. 2015].

Method Manifold Free of szlf— Preserve
Intersection | Features
Lorensen and Cline [1987] v v X
Wyvill et al. [1986] vV vV X
Chernyaev [1995] V? v X
Doi and Koide [1991] vV vV X
Kobbelt et al. [2001] v X vV
Ju et al. [2002] X X vV
Ju and Udeshi [2006] v X vV
Schaefer et al. [2007] X vV vV
Manson and Schaefer [2010] v v v
Portaneri et al. [2022] vV vV X
Liao et al. [2018] v X X
Shen et al. [2021] vV X X
Chen and Zhang [2021] v X v
Chen et al. [2022a] X vV vV

Pro.I The number of triangles in M, is either minimized or equals
to np if provided as a parameter;

ProIl M, is indistinguishable from M; when rendered from a far-
away view (a view where the diagonal length of the bounding
box of M; is less than np pixels);

Pro.II M, is both topologically and geometrically clean, i.e., water-
tight, manifold, and intersection-free.

These three properties of M, ensure rendering quality and enable
any downstream geometric processing on it to have high compu-
tational efficiency, requiring no mesh repairing steps. The level of
visual preservation in our second property is measured by Silhou-
ette difference and the normal difference between M; and M,. A
similar normal indicates M, preserves the sharp features of M; as
much as possible.

We follow several principles to design our approach: 1) We make
no assumptions on the topologic or geometric properties of the
input, allowing our approach to handle any models created in the
wild; 2) We adopt an interior-point optimization-like strategy to
realize the topology and geometry properties of Pro.Ill one by one:
once a property is satisfied, it will be maintained for the rest of the
steps; 3) We value robustness with the highest priority, so that our
approach can process any inputs created by different domains of
applications. Under guaranteed robustness, we further attempt to
improve the computational efficacy to the greatest extent possible.

Overview. We tackle this problem in two main stages (Fig. 2),
namely, mesh extraction (Section 3.1), and mesh optimization (Sec-
tion 3.2). During the mesh extraction stage, we first compute an
unsigned distance field for M;, then introduce a novel iso-surface
mesh extraction approach for a positive offset distance d (d = /n,
as mentioned in Section 1), and finally remove all invisible dis-
connected components from the extracted iso-surface to obtain a
mesh M. Our generated M optimally recovers the sharp features
implied by the d—iso-surface of the distance field, and guarantees
watertightness, manifoldness, and free of self-intersections. The
purpose of this stage is to generate a “clean” proxy mesh My of the
input M; that possibly has “dirty” topologic and geometric configu-
rations. Our second mesh optimization stage involves a while-loop
of three sequential steps: simplification, flow, and alignment. The
simplification step aims to reduce the number of triangles of M; by
performing one pass of quadric edge-collapse decimation for the en-
tire mesh; the flow step aims to pull M close to M; via a per-vertex
distance minimization; and the alignment step aims to optimize the
surface normal of My so that the sharp features are maintained,
which is achieved through local surface patch optimization. When
the while loop stops, we output the final mesh M,. Since all three
steps contain only local operations, the guarantees of M; achieved
during the first stage can be easily maintained by rolling back or
skipping any operations that violate a guarantee. In the following
sections, we provide technical details for each stage.

3.1 Mesh Extraction

(a) Input (b) MC33 (c) Ours

Fig. 3. The iso-surface meshes of a CAD model “block”. Compared with clas-
sic MC33 algorithm [Chernyaev 1995], our iso-surfacing approach achieves
a better visual similarity by recovering sharp features.

Robust Low-Poly Meshing for General 3D Models « 1:5

Given M; and d, our goal is to extract an d—iso-surface mesh M,
that is watertight, manifold, feature-preserving, and self-intersection-
free. Ensuring all these properties simultaneously is a challenging
task. As an example, simply applying the well-known algorithm of
MC33 cannot capture sharp features of the iso-surface as shown
in Fig. 3. We tackle the mesh extraction problem by re-meshing the
extracted local surface patches from templates of MC33. We selec-
tively insert additional points to refine these local surface patches.
Our key technique lies in the proposed mesh refinement technique
that 1) guarantees topologically watertight and manifold proper-
ties and 2) captures geometric sharp features without causing self-
intersection. We first compute a proper discretization of an unsigned
distance function defined for M;, then analyze the connectivity
changes when inserting new points to the MC33 templates to main-
tain the topology guarantees of the resulting mesh. After that, we
focus on the geometry fidelity of the resulting mesh, i.e. feature-
preserving and self-intersection-free. For the extracted mesh M,
we finally remove invisible components.

Discretization. An unsigned distance field is defined as a function:
f(p) := min [lp—gql|, 1)
qeM;

where p € R3. The implicit function of d-iso-surface is f(p) = d.
Since the explicit representation of the d-iso-surface is intractable,
we follow the general pipeline of prior iso-surfacing approaches that
first voxelize the ambient space around M;, and then approximate
the solution through extracting local surface patches within each
voxel. Since the local patches are typically simple, the voxel size
plays an important role in the to-be-extracted mesh. A coarse voxel
size can miss important solutions, such as the one illustrated in Fig. 4,
where no d-iso-surface could be ex-
tracted if a grid size large than 24 is
used, while an excessively small voxel
size will result in a dense grid that is
time-consuming to compute (Fig. 15).
By default, we choose the edge length
of a voxel to be d/\/g to avoid geo-
metric feature losses as illustrated in
the Fig. 4.

d]

Fig. 4. The d-iso-surface
(green lines) of the input
mesh (red line) cannot be
captured if the voxel size
is larger than 2d.

Topologic Guarantees. For each voxel,
we employ existing templates to de-
cide the iso-contours [Chernyaev 1995; Custodio et al. 2013;
Lorensen and Cline 1987], and then insert an additional point for
each contour. The templates of either the original MC [Lorensen
and Cline 1987] or MC33 [Chernyaev 1995; Custodio et al. 2013]
can be used to generate the iso-contours since they both ensure
the extracted mesh is watertight and manifold. We choose MC33
in this work since it covers more linear interpolation cases and
resolves the ambiguity in MC, thus extracting iso-surface meshes
with generally smaller genus [Chernyaev 1995; Custodio et al. 2013].
As illustrated in Fig. 23, we insert one vertex per iso-contour surface
if it is homemorphic to a disk, where the iso-contour surfaces of
cases 4.1.2, 6.1.2, 7.4.2, 10.1.2 and 12.1.2, and one iso-contour of case
13.5.2 are excluded since they have two boundaries. This scheme

ACM Trans. Graph., Vol. 1, No. 1, Article 1. Publication date: January 2023.

1:6 + Zhen Chen, Zherong Pan, Kui Wu, Etienne Vouga, and Xifeng Gao

Sievla s

(a) Without Constraints (b) With Constraints (c) Polyhedrony (d) Polyhedron;

Fig. 5. Illustration of our feature-aware iso-surface extraction step for MC33
case 4.1.1. The cube vertices with iso-value smaller than d is marked as blue,
while the red vertices are the opposite. The iso-points are marked as pink,
and the feature points are marked as yellow. Without forcing the feature
points within their belonging polyhedra (c, d), it is easy to obtain a mesh
with self-intersections (a).

ensures that the additional vertices neither bring any non-manifold
configurations nor create holes in the resulting mesh.

Feature Vertex Insertion. We use one vertex per local patch with a
disk-topology to provide more degrees of freedom to capture sharp
features. Its position can be computed by minimizing the distance
to patch vertices along the normal directions:

arg minz (np, - (x - pi))z, ()

where x is the desired position, p; and np, denote an iso-contour
vertex and its normal, respectively, and the summation goes through
all patch vertices. However, without any constraints, x may be arbi-
trarily positioned and cause surface intersections in the extracted
mesh. This issue is deteriorated by the template cases with multiple
iso-contours. Fig. 5 illustrates such as example using MC33 case
4.1.1.

We propose a simple approach to recover feature vertices with-
out mesh intersections. Given a voxel, we subdivide it into convex
polyhedra within which the feature vertices are constrained. As
illustrated in Fig. 24, the subdivision is performed according to the
number and the different configurations of the iso-contours with
a disk-topology. For example, for cases with only a single disk-
topology iso-contour, such as case 1, no subdivision is involved
and the polyhedron is the voxel itself, and for those with multiple
iso-contours, such as case 4.1.1, convex and planar polygons are
needed to partition the voxel into non-overlapping polyhedra. If
we constrain the position of the inserted vertex stays inside its be-
longing polyhedron, the extracted mesh is guaranteed to incur no
self-intersections.

Accordingly, for each inserted vertex, we obtain its coordinate x
by solving a linear constrained quadratic programming:

argminz ("pi S (x - p,-))2
* (©))
sk, ng-(x— Cf) <0, Yn; € N;

where N is the set of face normals of the corresponding polyhedron
of x, and cy is the center of the corresponding polyhedron face. To
compute np,, if p; € M;, we simply use the mesh normal, otherwise,
we first solve for any p¥ € arg min,epr, |pi — pll and then let

np, = (pi — p)/llpi — pFll.

ACM Trans. Graph., Vol. 1, No. 1, Article 1. Publication date: January 2023.

Feature Extraction. The previous step recovers vertices on sharp
features of the d-iso-surface. But their connections may not align
well with the sharp edges, the highlighted region in Fig. 6b demon-
strates this issue. Furthermore, since the sharp features exist in a
small fraction of voxels, we aim at a minimal increase in the ad-
ditional feature edges and vertices by inserting only those feature
vertices on sharp features and using the original MC33 templates
as much as possible. However, we do not know the sharp features
of the d-iso-surface as prior. Therefore, we introduce a posterior
approach to recover the necessary feature curves, which involves
two phases: Feature Edge Adjustment, and Feature Filtering. The first
phase generates an iso-surface mesh by considering all inserted fea-
ture vertices as sharp features. With this iso-surface mesh, we can
use existing automatic feature identification approaches to obtain
sharp features. The second phase generates the actual iso-surface
mesh My by blending the iso-contour patches containing the de-
tected feature vertices with those original MC33 patches that do not
contain any sharp features.

Feature Edge Adjustment. During the first phase, we insert a fea-
ture vertex for every disk-topologic iso-contour patch. We then
perform an edge-flip operation for every mesh edge if the flipped
edge connects two inserted feature vertices (see Algorithm 2 for
more details). To ensure the self-intersection-free guarantee, we skip
those edge-flips that may cause self-intersections. This phase can
already produce an iso-surface mesh that satisfies the desired topo-
logic and geometric properties. However, as mentioned earlier, this
iso-surface mesh contains more elements than desired and those un-
necessary “fake” sharp features are noisy and not visual-appealing
(see the top two zoomed-in figures in Fig. 6c).

Feature Filtering. During the second phase, we first extract a fea-
ture graph from the resulting mesh of the first phase. The feature
graph is composed of a set of feature curves where each curve is a
sequence of mesh edges with its dihedral angle smaller than 6y (see
[Gao et al. 2019] for details). We then mark a feature curve as valid if
it is composed of more than /) mesh edges. The valid feature curves
are considered to contain “real” sharp features to recover. After that,
for each iso-contour patch, we keep those inserted feature vertices
if they are on the valid feature curves, otherwise, we use their origi-
nal template. This step removes a lot of noisy, “fake” feature edges.
Finally, we perform the edge flip algorithm Algorithm 2 once more
to extract the d-iso-surface mesh M.

Our feature recovery algorithm performs well for the models with
various features that can be represented by piecewise line segments,
e.g. sharp curves in Fig. 3 and the eye and beak contours in Fig. 12.

Interior Removal. Since we use an unsigned distance function, our
final extracted iso-surface My may have interior components, which
are totally invisible. Given the generated mesh M, are watertight
and free of self-intersection, we can apply the in-and-out test and
remove the components which is purely inside of any of the others.

3.2 Mesh Optimization

Starting from a mesh M that is watertight, manifold, feature pre-
serving, and self-intersection-free, we now introduce an iterative
mesh optimization approach to obtain a final M, that satisfies our

,/‘ 7 ':/ \
= \ 4 ‘

e S -

T — 75

(a) Input mesh M; (b) Unflipped feature mesh

Robust Low-Poly Meshing for General 3D Models « 1:7

(e) Final iso-surface My

Fig. 6. Our iso-surface extraction pipeline. We mark the initial feature points in the third figure and the remaining ones after applying feature graph filter in
the last figure (the yellow points). Our post process successfully resolves the sawtooth artifacts around the ear of the character (the top two zoomed-in figures

in the third and last columns, with the top ones are rendered without wireframes), but still keeps the major sharp features, for example, the bottom zoomed-in

figures.

Algorithm 1 Iso-surface Extraction

Input: M;, d, 0y, Iy
Output: My,

1: G « gridDiscretization(M;, d) > generate the grids
2: Compute f(p) for all grid points p in G > Equation 1
3. for each cube € G do > iso-surface extraction
4: Lookup for the template case > [Chernyaev 1995], Fig. 23
5 for each Disk-topologic patch in cube case do

6: Compute the iso-points on cube edges

7: Form the quadratic program > Equation 3, Fig. 24
8 Solve for feature vertices > Fig. 23
9: end for
10: end for
11: My « edgeFlip(M,) to connect feature vertices > Algorithm 2
12: My « featureFilter(My, 6,)
13: My < removelnterior(My)

Algorithm 2 Edge Flip
Input: M,
Output: M, > mesh after edge-flips

Qe {}

22 BVHTree T

3: Tbuild(My) > [Karras 2012]
4: for each edge e € M; do

5 if e.oppVs are feature vertices then

6 Q.push(e) > opposite vertices are feature vertices
7 end if

8: end for

9: while Q # {} do

10: e «— Q.top()
11: if e was not flipped before then

12: if isIntersectionFree(M,, T, e) then

13: flipEdge(My, e)

14: T.refit(My) > update BVH [Karras 2012]
15: end if

16: end if

17: end while

three desired properties, i.e., Pro.I-III. As shown in Algorithm 3, our
optimization involves a maximum of N iterations of three sequen-
tial steps: simplification, flow, and alignment. We stop the iterations
until either the Hausdorff distance between the simplified meshes
of two consecutive loops (relative change) is smaller than ¢, the
loop number reaches N, or the target face number reduces below
ng, where the first condition has the highest priority by default.
Each of the three steps involves only local operations. To ensure
our optimization proceeds towards the generation of M, with the
desired properties, we perform the following checks for the meshes
before and after applying a local operation:

(1) Topology consistency: the updated mesh is manifold, water-
tight, and has the same genus and the number of components
as the mesh before applying the local operation;

(2) Self-intersection-free: the updated mesh is free of intersec-
tions.

Mesh Simplification. This step aims to achieve the first property of
M,, i.e, M, contains as few triangles as possible. We perform an en-
tire pass of the standard edge-collapse operation for all edges of M,
to reduce as many faces as possible or match
the target face number np, where the co-
ordinate of the newly generated vertices
are determined by the quadratic edge met-
ric (QEM) [Garland and Heckbert 1997] M; M)
weighted by virtual planes for each edge
to avoid the degeneracy in planar regions. d
Importantly, the topologic and geometric d
validity of M, is maintained during the sim-
plification process by skipping those edge-
collapse operations that may violate the
aforementioned checks. Moreover, to ensure
we get closer to M;, we also skip the collapse
operations which increase the distance be-
tween affected local triangle patches and M;.
For efficiency concerns, we only compute
the one-sided distance from the local patch
to the input mesh. This one-sided check may result in the acceptance

T d+e

Fig. 7. Collapsing
the yellow edge re-
duces the distance
from M, to M; (d+
€ — d), but leads
to an undesirable
visual appearance.

ACM Trans. Graph., Vol. 1, No. 1, Article 1. Publication date: January 2023.

1:8 + Zhen Chen, Zherong Pan, Kui Wu, Etienne Vouga, and Xifeng Gao

of unexpected collapses, as illustrated in Fig. 7. To overcome this,
we further skip the operations leading to a Hausdorff distance larger
than d, where the two involving meshes are the ones before and
after the local operation and the Hausdorff distance is computed
approximately by sampling points on the local triangle patches as
in [Cignoni et al. 1998]. We show the comparison in Fig. 8. Without
the guarantee of a distance decrease, we will lose some important in-
formation. Without the guarantee of a small Hausdorff distance, we
may end up with larger silhouette difference and normal difference,
that is, worse visual similarity.

(a) Input (b) Without condy 2 (c) Without cond; (d) Without conds (e) Ours

(0,0) (0.23,0.43) (0.032, 0.19) (0.0055, 0.12) (0.0033, 0.11)

Fig. 8. The results of different simplification conditions. (e, e) denotes
(silhouette difference, normal difference). conds: skip the collapse which
increases the vertex-surface distance to M;; condy: skip the collapse which
results a large Hausdorff distance. After applying the both conditions, we

achieve a better visual score.

Mesh Flow. Our mesh flow step brings M,, geometrically close to
M; and reduces the silhouette visual differences between the two
meshes. The detailed algorithm is provided in Algorithm 3 (Line
7-11).

Algorithm 3 Mesh Optimization Process

Input: M;, My, d, np N, r, e
Output: M,

1: My « Md

2: | < bboxSize(M;)

3 fori=0to N do

> bounding box diagonal size

4 M — M,
5: M, «— meshSimplification(M;, My, d,np) » Algorithm 5
6: M — M,
7: for each vertex v € M, do > mesh flow step
8: v" « argmin, ¢ |lu - 0|
9: dy «— r(v* —o) > successive flow, r < 1
10: v « localUpdate(M,, v, dy,) > Algorithm 4
11 end for
12: for each vertex v € M, do > feature alignment step
13: Vopt featureAlignment(]VI, M,,v) > Algorithm 6
14: dy — vopt — 0V
15: v « localUpdate(M,, v, dy,) > Algorithm 4
16: end for
17: if Hausdorff(My, M’) < € - [then
18: Break > update is small enough
19: end if
20: end for

When actually applying the mesh flow process, for each vertex v
in M,, we find its Euclidean-distance-wise closest point v* of M;

ACM Trans. Graph., Vol. 1, No. 1, Article 1. Publication date: January 2023.

Algorithm 4 Local Update

Input: M, v, d,,
Output: updated v
Note: v is a vertex of M.

1 a1

2: while v + ad,, leads to self-intersections do

3 a— a2

4: end while

5: return v + 0.95ad, > Using 0.95 to avoid numerical error

Algorithm 5 Mesh Simplification

Input: M;, M,, d, np
Output: simplified mesh M,
Notes: M; is the reference mesh, np is optional

1: Form priority queue Q > [Garland and Heckbert 1997]
22 BVHTree T
3: T.build(M,) > [Karras 2012]
4: while Q # {} do
5: e «— Q.top()
6: if e has been visited before then
7: continue > has been collapsed
8 end if
9: if topologyConsistencyCheck(M,, e) failed then
10: continue > [Cignoni et al. 2008]
11: end if
12: if not isIntersectionFree(M,, T, ¢) then
13: continue > collapse will introduce intersections
14: end if
15: M, « sub-mesh of M, adjacent to e
16: M, — M, after collapse
17: if dist(M, — M;) < dist(M, — M;) then
18: continue > collapse increases the distance to M;
19: end if
20 if dist(M, — M}) > d or dist(M, — M,) > d then
21: continue > distance update is too large
22 end if
23: collapseEdge(M,,) > satisfy all desired properties
24: T.refit(M,) > update BVH [Karras 2012]
25: if nf is given and M,.faceNumber < nr then

26: break
27: end if
28: end while
29: return M,

and successively push v to v* along the vector dy, = v* — v. Instead
of updating v to v* directly, we deform v towards v* based on a
constant fractional ratio r of the vector, which allows more moving
space for the entire mesh and reduces the chance of optimization
stuck when M, is still far from M;. We also apply a simple line
search for the self-intersection-free check to find the maximum step
size during the local deformation (Algorithm 4).

Algorithm 6 Feature Alignment

Input:]\71, My, v
Output: updated v which preserves features
Require: M and M, has the same mesh connectivity
1. for each f € N'(v) do > loop over adjacent faces

2: ng < eXe > unnormalized face normal of M,
3 cp < |Ingll > get the initial norm
4: n e €y X €1 »> unnormalized face normal of M
5. end for

6: Fix cp, get vopt by minimizing Equation 5 » quadratic program
7: return vopt

Feature Alignment. The previous mesh flow can stretch the mesh
unanimously, breaking features and creating dirty inputs for sub-
sequent mesh simplification and flow procedure (see Fig. 9 for an
example). We thus introduce a feature alignment step. For each ver-
tex v, we seek an optimized position vgpt by minimizing the shape
difference between the local surface of vopt and that of v before
mesh flow:

Y
i ng

E(v) := —_—
© el Tl

feN(v)

) (4)

where we use the normal disagreement to approximate the shape
difference (Line 6 in Algorithm 6), N!(v) is the faces within the
1-ring neighbor of v, and n I n f are the unnormalized face normal
of the current mesh and the one before the flow respectively. The
summation takes over all faces within the 1-ring neighborhood
of vertex v. This face normal difference summation approximates
the vertex normal difference. Notice that Equation 4 is a nonlinear
function, which can be solved by the classical Newton’s Method.
In order to improve the efficiency, we instead treat the |[ng|| as
constant (equal to the value at the beginning of the alignment step,
denoted as c¢y) and solve a quadratic approximation of Equation 4:

~ 2
Eoy= Y |2 "—fH

-)
ool gl

Once we obtain the corresponding vopt that minimizes Equation 5,
we update v to be vopt With the line search Algorithm 4 to prevent
self-intersections. Given this local operation only slightly updates
the mesh, our quadratic approximation leads to small errors, but
in turn, significantly boosts performance (turning a non-convex
problem to an unconstrained quadratic program).

3.3 Self-intersection Check Acceleration

Starting from an intersection-free 3D triangle mesh, our low-poly
re-meshing pipeline could introduce intersections when performing
the edge flips during mesh extraction, the edge collapses during
mesh simplification, and the vertex optimization during the mesh
flow and the feature alignment steps. Note that we say a mesh has
intersections when any of its two triangles overlaps, or any of its
two non-adjacent triangles touch or intersect.

Before discussing our accelerated check of self-intersections, we
first introduce the necessary notations. For a vertex v, we denote

Robust Low-Poly Meshing for General 3D Models « 1:9

(a) Input (b) Without Feature Alignment (c) Ours

Fig. 9. Without feature alignment step, we will end up with the results with
"spikes" (see zoomed-in region for details).

N (v) as the set of all triangles that are bounded within its i-th ring
neighborhood. For example, for the bottom left image in Fig. 10,
N1 (v) is the red region, and N?(v) is the union of red and green
region’. We further denote M, as the local neighborhood related
to a certain local operation, where M, endows different definitions.
For edge flip, we define M, = {fi, 2} where fi and f are the two
neighboring triangles of e. For edge collapse, M, = N'1(v’) where
o’ is the newly created vertex. For vertex optimization (otherwise
known as smoothing), we let M, = N'(v). Moreover, we let M;
be the sub-mesh formed by all faces that share at least one vertex
with M, but not in M (the green regions in Fig. 10). Finally, we let
M; = Mg |J Me. The rest of the mesh are denoted as M, (the blue
regions in Fig. 10).

Fig. 10. Edge or vertex operation illustration. M1 = M, | M;.

We note that a mesh-reduction operation does not introduce
self-intersection iff the following two conditions hold:

(1) M, does not intersect M;;

(2) M is self-intersection free.
Here we skip the intersection check within Mg, M, and between
M; and M, because Mg and M, are the unchanged sub-mesh of the
mesh before the local operation, which is free of self-intersections.
In general, the two conditions above can be check by conventional

3These sets of triangles are called “topological neighborhoods”, introduced in [Attene
2010]

ACM Trans. Graph., Vol. 1, No. 1, Article 1. Publication date: January 2023.

1:10 »

Zhen Chen, Zherong Pan, Kui Wu, Etienne Vouga, and Xifeng Gao

Table 2. A speedup summary of self-intersection checks (used in edge flip, edge collapse, and vertex optimization steps) for some of the figures shown in the
paper. The upper index of the figures indicates the corresponding row of that figure. Ty: the time cost of the neighboring triangle intersection check only using
surface normal test. T;: the same time information with full normal cone test (surface normal + contour test). T*: the same time information but applying
parallel triangle pairs intersection check. Ty, Ty, T,*: the total time information of the whole intersection-check process (neighboring triangle intersection check
+ BVH check), corresponding to T, T}, T,*.

Figures Ty(s) T:(s) T T | TXG) | TX/Ta | Ti(s) T/(s) | TV/T | TX(s) | ¥/ T
Fig. 2 23.80 | 2587.09 | 108.71 | 111.59 4.69 119.31 | 2689.11 | 22.54 | 213.63 1.79
Fig. 6 16.15 | 2847.69 | 176.31 | 119.82 7.42 115.86 | 2955.23 | 25.51 | 224.50 1.94

Fig. ll(d)o 21.98 | 2653.21 | 120.70 | 158.18 7.20 120.35 | 2769.56 | 23.01 | 266.17 2.21
Fig. 12(g)0 13.51 | 2409.66 | 178.40 70.66 5.23 93.06 2497.08 | 26.83 | 156.08 1.68
Fig. 12(g)1 10.24 | 1377.05 | 134.51 43.98 4.30 57.25 1421.92 | 24.84 87.36 1.53
Fig. 13(j)0 58.93 | 7958.25 | 135.05 | 552.99 9.38 360.12 | 8291.89 | 23.03 | 885.49 2.46
Fig. 13(j)1 5.92 819.00 138.37 | 39.56 6.68 29.79 846.21 28.41 65.04 2.18
Fig. 14(d) 13.92 | 2284.73 | 164.08 | 106.71 7.66 99.87 2382.30 | 23.86 | 200.90 2.01
Fig. 22(3.)2 15.65 | 2283.99 | 14593 | 96.42 6.16 98.12 | 2376.82 | 24.22 | 187.28 1.91
Average 20.01 | 2802.30 | 144.67 | 144.43 4.69 121.52 | 2914.46 | 24.69 | 254.05 1.79

triangle-triangle intersection test. However, checking the first con-
dition above is computationally inefficient, especially when M,
contains lots of triangles. Given M, does not share any vertex or
edge with M,, this part can be handled by standard BVH-based
collision detection. The detailed algorithm is given in Algorithm 7.

Algorithm 7 BVH Meshes Intersection Check

Input: M., M,, T (BVH tree of M,)
Output: whether M, intersects with M,
Notes: all faces M, do not share vertices with the faces in M,
: for each face f € M, do
fi «T.closestFace(f)
if triTrilntersection(f, fi) then
return true
end if
end for
return false

> get the closest face

> does intersect

I U

> does not intersect

Unfortunately, for the second case, all the faces in M, share at
least one vertex with the faces in M. The BVH-based acceleration
is no longer efficient, as the shared features always lead to failure in
BVH culling. In this scenario, the naive approach involves | M |- | Ms|
pairs of triangle-triangle intersection check. Although |M,| and | M|
are usually small for one local operation, the three edge flip, edge col-
lapse, and vertex optimization operations will typically be executed
for a massive number of times during the entire re-meshing pipeline.
In practice, we find that this M; intersection-free check takes ~ 50%
of the computational time of the whole intersection check process.
Avoiding unnecessary triangle-triangle intersection checks, which
is expensive to compute, will lead to a dramatic speedup. To this end,
we note that M; is open, and to check whether a mesh with bound-
aries has self-intersection, Volino and Thalmann [1994] introduce
a theory providing a sufficient condition: Let M be a continuous
surface, bounded by oM, M is self-intersection free if there exists a
vector n, such that:

(1) Surface Normal Test: For every point p € M, np-n > 0, where
np is the surface normal at p;

ACM Trans. Graph., Vol. 1, No. 1, Article 1. Publication date: January 2023.

(2) Contour Test: The projection of the contour oM along the n
is not self-intersected.

They also provide a discrete version for triangle meshes:

(1) Surface Normal Test: The angle of the normal cone formed by
all triangle face normals is less than %;

(2) Contour Test: The projection of the mesh boundary oM along
the normal cone axis is not self-intersected.

For the first test, one can use the tight normal cone merging algo-
rithm mentioned by Han et al [2021], and for the second test, Wang
et al [2017] proposed a side-sign based unprojected contour test.

Surface normal test only need |M;| times normal cone expan-
sion [Han et al. 2021]. As shown in Table 2, only applying Surface
Normal Test results in ~145X speedup compared with the full nor-
mal cone test, and 4.69X speed up compared with parallel triangle-
triangle pair check. Moreover, this normal cone test acceleration
speeds up the whole self-intersection check process by 24.69x and
1.79x compared with the full normal cone test and parallel triangle-
triangle pair check, respectively. Surface normal test alone in prac-
tice is enough to generate a surface without self-intersection. We
perform only the surface normal test during the self-intersection
check, and if it fails, we apply direct triangle-triangle pair checks. Al-
though the surface normal test alone is not sufficient to ensure free
of self-intersection of My, in practice, we find our final output M,
is always self-intersection free. We also perform a self-intersection
check of M,. If M,, intersects itself, we remove the surface normal
test filter, and re-run the algorithm with direct triangle-triangle pair
checks.

4 EXPERIMENTS

We implement our algorithm in C++, using Eigen for linear algebra
routines, CGAL [Brénnimann et al. 2022] for exact triangle-triangle
intersection check, libigl [Jacobson et al. 2018] for basic geometry
processing routines. We use the fast winding number [Barill et al.
2018] for interior components identification. We implement the
bottom-up BVH traversal algorithm mentioned in [Karras 2012] to
refit the BVH for self-intersection check, and use Metro [Cignoni
et al. 1998] for Hausdorff distance computation. Unless particularly
mentioned, we set np = 200, 6y = 120°,lp = 4, N = 50,7 = %, and

Robust Low-Poly Meshing for General 3D Models « 1:11

Table 3. Statistics of the results generated for the entire dataset by all comparing low-poly meshing approaches, including the number of vertices (#V), the
number of triangles (#F), the number of components (#C), the ratios between the number of meshes being self-intersection-free (r¢), manifold (r,,,), watertight
(rw), successfully generated (rs) and the 100 models in the dataset, and the average (ave) and standard deviation (sd) of the four visual preservation metrics,
i.e.,, PSNR, LFD, SD, ND, and HD. We treat a case as a failure if the algorithm terminated with an exception (marked as %), or reaches the timeout threshold

(1h, marked as 7).

PSNR LFD

Methods # #F #C r 'm Tw Ts ave sd ave sd ave sd ave sd ave sd

Simplygonl 703 1631 8 9.0% 37.0% 34.0% 100% 24.79 2.73 844.94 1806.07 0.013 0.016 0.049 0.030 0.024 0.016
Simplygonz 763 1631 2 62% 93.0% 93.0% 100% 25.05 2.41 347.50 188.68 0.0048 0.0043 0.040 0.064 0.022 0.020
Blender 842 1803 12 11.0% 19.0% 14.0% 100% 23.68 3.51 1220.74 1637.12 0.030 0.058 0.071 0.092 0.040 0.052
QEM 707 1629 9 5.0% 12.0% 10.0% 100% 25.18 2.87 748.98 1059.45 0.012 0.021 0.041 0.049 0.031 0.023
Gao et al. 458 912 2 60.7% | 91.0% | 91.0% | 89.0%" 22.55 | 2.63 1254.85 3978.50 0.020 0.055 0.063 | 0.059 | 0.078 | 0.073
KSR 727 1471 7 2.1% 2.1% 2.1% 96.0%" 22.96 3.31 3108.90 8138.43 0.058 0.12 0.089 0.13 0.029 0.020
PolyFit 69 55 5 0% 88.9% 0.0% 54.0%* 17.31 1.41 6173.04 25941.63 0.29 0.15 0.51 0.16 0.29 0.156
Ours” 214 592 1 100% 100% 100% 100% 18.67 2.19 3696.22 2700.15 0.14 0.14 0.24 0.17 0.15 0.11
TetWild 753 1611 5 63.0% 32.0% 32.0% 100% 24.26 2.85 1932.26 7011.41 0.029 0.094 0.062 0.11 0.050 0.083
fTetWild 773 1643 4 73.7% 38.9% 38.9% 95.0%* 24.21 2.77 2195.83 9562.01 0.037 0.13 0.069 0.14 0.059 0.12
ManifoldPlus 747 1610 3 24.0% 66.0% 64.0% 100% 25.14 2.49 559.84 1674.21 0.0060 0.0070 0.042 0.070 0.026 0.020
AlphaWrappingI 804 1631 1 93.0% 100% 100% 100% 23.18 2.28 667.40 369.27 0.018 0.0085 0.059 0.06 0.037 0.024
AlphaWrappingZ 743 1510 1 100% 100% 100% 100% 25.06 2.66 327.32 184.00 0.0046 0.0058 0.042 0.068 0.032 0.024
Ours 760 1631 2 58.0% 100% 100% 100% 22.90 2.23 716.04 413.22 0.020 0.0090 0.060 0.067 0.029 0.020
Ours 760 1631 2 100% 100% 100% 100% 25.21 2.49 310.30 169.58 0.0045 0.0045 0.037 0.067 0.022 0.020

€ = 10~% by default and run our experiments on a workstation with
a 32-cores Intel processor clocked at 3.7Ghz and 256Gb of memory,
and we use TBB for parallelization.

Dataset. We test our algorithm on a subset of Thingil0K [Zhou
and Jacobson 2016], where we randomly choose 100 models while
filtering out those with the number of triangles smaller than 5000.
For this dataset, the average number of faces and disconnected com-
ponents are 120k and 10. The average number of non-manifold edges
and self-intersected triangle pairs are 2197 and 6729, respectively.

4.1 Metrics

We evaluate the generated low-poly meshes from several aspects, in-
cluding the number of contained triangles, topology (watertightness
and manifoldness) and geometry (self-intersection-free) guarantees,
and the visual preservation of the input.

Similarity Metrics. For visual similarity measurement, we employ
the following metrics:

(1) Hausdorff distance (HD), used to measure the geometrical
distance between two 3D shapes;

(2) Light field distance (LFD) [Chen et al. 2003], which measures
the visual similarity between two 3D shapes;

(3) Silhouette and normal differences [Gao et al. 2022], denoted
as SD and ND respectively;

(4) Peak signal-to-noise ratio (PSNR) computed by rendering
the high- and low-poly meshes with 48 camera views and
averaging the PSNR of the 48 pairs of images.

Among all these metrics, a smaller HD, LFD, SD, or ND indicates a
better visual similarity, while for PSNR the higher the better.

4.2 Comparisons

To <ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>